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Two Approaches to Coupling Classical and
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We address the issue of coupling variables which are essentially classical to
variables that are quantum. Two approaches are discussed. In the first, continuous
quantum measurement theory is used to construct a phenomenological description
of the interaction of a quasiclassical variable X with a quantum variable x, where
the quasiclassical nature of X is assumed to have come about as a result of
decoherence. The state of the quantum subsystem evolves according to the
stochastic nonlinear SchroÈ dinger equation of a continuously measured system,
and the classical system couples to a stochastic c-number xÅ (t) representing the
imprecisely measured value of x. The theory gives intuitively sensible results
even when the quantum system starts out in a superposition of well-separated
localized states. The second approach involves a derivation of an effective theory
from the underlying quantum theory of the combined quasiclassical ±quantum
system, and uses the decoherent histories approach to quantum theory.

1. INTRODUCTION

What happens when a classical system interacts with a quantum system

in a nontrivial superposition state? Quantum field theory in curved spacetime

is an example of a number of situations where one would like to know the
answer to this question. There, the effect of the quantized matter field on the

classical gravitational field is often assessed using the semiclassical Einstein

equations [1, 2 ]

G m n 5 8 p G ^ T m n & (1.1)

The left-hand side is the Einstein tensor of the classical metric field g m n and

the right-hand side is the expectation value of the energy-momentum tensor

of a quantum field.
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Although we do not yet have the complete, workable theory of quantum

gravity required to derive an equation like (1.1), on general grounds it is

clear that it is unlikely to be valid unless the fluctuations in T m n are small
[3±5 ]. Indeed, (1.1) fails to give intuitively sensible results when the matter

field is in a superposition of localized states [6, 7 ]. In particular, when the

quantum state of the matter field consists of a superposition of two well-

separated localized states, Eq. (1.1) suggests that the gravitational field

couples to the average energy density of the two states, while physical

intuition suggests that the gravitational field feels the energy of one or
other of the localized matter states, with some probability. It is by no

means obvious, however, that we have to resort to quantum gravity to

accommodate such nontrivial matter states. This leads one to ask whether

there exists a semiclassical theory with a much wider range of validity than

(1.1) which gives intuitively reasonable results for nontrivial superposition

states for the matter field.
The aim of this contribution is to describe two related approaches to

coupling classical and quantum variables which go far beyond the naive

mean-field equations, and produce intuitively sensible results in the key

case of superposition states. The full problem of the semiclassical Einstein

equations (1.1) will not be addressed. Rather, we will concentrate on a simple
model in which the scheme is easily presented and perhaps verified. Of

course, many previous authors have tackled this problem [8±11 ]. What is

perhaps new in the present approach compared to previous ones is the explicit

incorporation of the notion of decoherence to ensure that the ª classicalº

system really is classical. (See, however, ref. 8, for some earlier comments

along these lines.)
Our considerations will be based entirely on the following simple model,

consisting of a classical particle with position X in a potential V(X ) coupled

to a harmonic oscillator with position x which will later be quantized. The

action is

S 5 # dt 1 12 MXÇ 2 2 V(X ) 1
1

2
mxÇ 2 2

1

2
m v 2x2 2 l Xx 2 (1.2)

Hence the classical equations of motion are

MXÈ 1 V 8(X ) 1 l x 5 0 (1.3)

mxÈ 1 m v 2x 1 l X 5 0 (1.4)

The naive mean-field approach involves replacing (1.3) with the equation
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MXÈ 1 V 8(X ) 1 l ^ c ) xÃ| c & 5 0 (1.5)

and replacing (1.4) with the SchroÈ dinger equation

d

dt
) c & 5 2

i

"
(HÃ0 1 l XxÃ) ) c & (1.6)

for the quantum particle. HÃ0 is the Hamiltonian of the quantum particle (in

this case a harmonic oscillator) and 2 X(t) is regarded as an external classical

force. As stated above, the scheme (1.5), (1.6) is unlikely to have a very

wide range of validity.

Generally, for a quantum system with wave function c (x), there will be

a nonzero probability for x to take any one of a range of values, and the
expectation value ^ xÃ& [as in Eq. (1.5) ] will not be representative of the

distribution of x (unless the distribution just happens to be peaked about its

expectation value). One would therefore expect the classical system to be

stochastically influenced by the quantum system and follow one of an ensem-

ble trajectories. To be precise, we expect an improved version of (1.5) to be

of the form

MXÈ 1 V 8(X ) 1 l xÅ (t) 5 0 (1.7)

where xÅ (t) is now a classical stochastic variable, whose probability distribition

is determined by the dynamics and quantum state of the quantum particle.

The purpose of this paper is to describe two different but related

approaches to coupling classical and quantum variables, both of which lead

to an equation of the form (1.7) and both of which yield an explicit probability

distribution for xÅ (t). The first approach (which was developed in collaboration
with Lajos DioÂsi) is a phenomenological scheme based on continuous quan-

tum measurement theory. The second is a more fundamentally based scheme,

derived using the decoherent histories approach to quantum theory. This work

is based on two published papers [12, 13 ].

Taking the second of these schemes first, the question of coupling

classical variables to quantum variables is intimately connected to the question
of how certain variables become classical in the first place. We adopt the

point of view that there are no fundamentally classical systems in the world,

only quantum systems that are effectively classical under certain conditions.

The most comprehensive approach to obtaining generalizations of the semi-

classical scheme (1.5), (1.6) therefore consists in starting from the underlying

quantum theory of the whole composite system and then deriving the effective
form of that theory under the conditions in which one of the subsystems is

effectively classical. The most important condition that needs to be satisfied

for a subsystem to be effectively classical is decoherence Ð interference

between histories of certain types of variables (in this case position) must
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be destroyed (see, for example refs. 14 and 15). Decoherence is typically

brought about by some kind of coarse-graining procedure, of which perhaps

the most commonly used procedure is to couple to a large environment
(typically a heat bath) and then trace it out. The resulting decoherent variables

are often referred to as quasiclassical, a nomenclature we shall adopt. Quasi-

classical variables follow classical trajectories, but modified by fluctuations

induced by the environment that decoherered them. For sufficiently massive

particles, these fluctuations have negligible effect.

A derivation of an effective theory of coupled quasiclassical and quantum
variables therefore involves a three-component quantum system consisting

of a (ª to be quasiclassicalº ) particle with position X, coupled to an environ-

ment which is traced out to render X quasiclassical, and also coupled to the

position x of another (ª quantumº ) particle (not necessarily coupled to the

environment). In Section 3, we will show, in the context of a particular model,

how such an effective theory may be derived using the decoherent histories
approach to quantum theory.

Emergent classicality is, however, a widespread and generic phenome-

non. It has been demonstrated in a wide variety of different models using a

variety of different approaches to decoherence. This suggests that it ought

to be possible to write down directly a phenomenological model describing
the coupling of the quasiclassical variable X to the quantum variable x, but

without having to appeal to the full details of a specific decoherence calcula-

tion. Differently put, it is of interest to determine the minimal elaboration

required of Eqs. (1.5), (1.6) to obtain a viable scheme of coupled classical±

quantum variables. Such a scheme would also have the advantage that it may

be valid when the underlying quantum theory is not particularly manageable
or even not known (as may be the case for gravity).

For these reasons, in Section 2, a more phenomenological approach to

classical quantum couplings is presented. This approach is based on the

observation that there already exists a partial description of classical±quantum

couplings in the form of continuous quantum measurement theory. This

existing structure, together with a heurisitic appreciation of decoherence,
leads to the desired phenomenological scheme. The idea is to think of the

quasiclassical particle as in some sense ª measuringº the quantum particle’s

position and responding to the measured c-number result xÅ (a precursor to

this idea may be found in ref. 16). In this approach, the decoherence of the

quasiclassical particle is not modeled explicitly, but an appeal is made to

general known features of the decoherence process where necessary. In partic-
ular, the assumed decoherence ensures that the quasiclassical particle remains

quasiclassical (although may be stochastically influenced) even when it inter-

acts with the quantum particle in a nontrivial superposition.

The two models are summarized in Section 4.
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2. CLASSICAL± QUANTUM COUPLINGS VIA CONTINUOUS
QUANTUM MEASUREMENT THEORY

As stated in the Introduction, the first approach to coupling classical and
quantum variables is a phenomenological scheme using continuous quantum

measurement theory. The basic idea is to think of the classical variable as

in some sense ª measuringº the quantum particle and responding to the mea-

sured c-number result.

Consider, therefore, the consequences of standard quantum measurement

theory for the evolution of the coupled quasiclassical and quantum systems
over a small interval of time d t. The state ) c & of the quantum system will

evolve, as a result of the measurement, into the (unnormalized) state

) C xÅ & 5 PÃxÅ e 2 iHÃd t ) c & (2.1)

where HÃ 5 HÃ
0 1 l XxÃand PÃxÅ is a projection operator which asks whether

the position of the quantum particle is xÅ , to within some precision. [If the

classical system couples to some operator of the quantum system other than

position, e.g., momentum, then the projection operator in (2.1) is changed
accordingly, e.g., to a momentum projector. ] The probability that the measure-

ment yields the result xÅ is given by ^ C xÅ ) C xÅ & . It is then natural to suppose

that the classical particle, in responding to the measured result, will evolve

during this small time interval according to the equation of motion

MXÈ 1 V 8(X ) 1 l xÅ 5 0 (2.2)

with probability ^ C xÅ ) C xÅ & .
Now we would like to repeat the process for an arbitrary number of

time steps and then take the continuum limit. If PÃxÅ is an exact projection

operator, i.e., one for which PÃ2
xÅ 5 PÃxÅ , the continuum limit is trivial and of

no interest (this is the watchdog effect). However, standard quantum measure-

ment theory has been generalized to a well-defined and nontrivial process

that acts continuously in time by replacing PÃxÅ with a positive-operator-valued
measure (POVM) [16±19 ]. The simplest example, which we use here, is

a Gaussian,

PÃxÅ 5
1

(2 p D 2)1/2 exp 1 2 (xÃ2 xÅ )2

2 D 2 2 (2.3)

and the continuum limit involves taking D ® ` as d t ® 0 in such a way

that D 2 d t is held constant. The evolution of the wave function of the quantum

system is then conveniently expressed in terms of a path-integral expression

for the unnormalized wave function:
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C [xÅ (t) ](x8, t8) 5 # $x exp 1 i" #
t8

0

dt 1 12 mxÇ 2 2
1

2
m v 2x2 2 l xX 2 2

3 exp 1 2 #
t8

0

dt
(x 2 xÅ )2

4 s 2 2 C (x0, 0) (2.4)

Here, the integral is over paths x(t) satisfying x( 0) 5 x0 and x(t8) 5 x8. The

classical particle at each moment of time evolves according to Eq. (2.2),

where the functional probability distribution of the entire measured path xÅ (t)
takes the form

p [xÅ (t) ] 5 ^ C [xÅ (t) ]) C [xÅ (t) ]& (2.5)

[The parameter s in Eq. (2.5), representing the width of the effective ª mea-

surementº of the particle by the classical system, will be discussed below. ]
The scheme is therefore as follows. We solve the equations (2.2) and (2.4)

where xÅ (t) is regarded as a stochastic variable whose probability distribution is

given by (2.5). The final result is an ensemble of xÅ -dependent classical and

quantum trajectories respectively for the two particles, with an interdependent

probability distribution.

It turns out that this system (2.2), (2.4), (2.5) can be rewritten in such
a way that brings it closer to the form of the naive mean-field equations

(1.5), (1.6). The basic issue is that Eq. (2.5) gives the probability for an entire

history of measured alternatives, xÅ (t). Yet the naive mean-field equations (1.5),

(1.6) are evolution equations defined at each moment of time. Fortunately, the

system (2.2), (2.4), (2.5) may be rewritten as follows. Consider the basic

process (2.1) with the Gaussian projector (2.3), but in addition let the state
vector be normalized at each time step. Then denoting the normalized state

at each time by ) c & , and taking the continuum limit in the manner indicated

above, it is readily shown [19 ] that ) c & obeys a stochastic nonlinear equation

describing a system undergoing continuous measurement:

d

dt
) c & 5 1 2 i

"
(HÃ0 1 l XxÃ) 2

1

4 s 2 (xÃ2 ^ xÃ& )2 2 ) c &

1
1

2 s
(xÃ2 ^ xÃ& ) ) c & h (t) (2.6)

Here, h (t) is the standard Gaussian white noise, with linear and quadratic
means,

M [h (t) ] 5 0, M [h (t) h (t8) ] 5 d (t 2 t8) (2.7)

where M( ? ? ? ) denotes stochastic averaging. The noise terms are to be inter-

preted in the sense of Ito. The measured value xÅ is then related to h by
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xÅ 5 ^ c ) xÃ) c & 1 s h (t) (2.8)

Hence the final form of Eq. (2.2) [replacing Eq. (1.5) ] is

MXÈ 1 V 8(X ) 1 l ^ c ) xÃ| c & 1 l s h (t) 5 0 (2.9)

and (1.6) is replaced by the stochastic nonlinear equation (2.6).

Turn now to the question of the value of the parameter s . As discussed

above, the quasiclassical particle suffers fluctuations as a result of interacting
with the environment that decohered it. This must still be true even when it

is not coupled to the quantum particle. We can therefore fix s by demanding

that in Eq. (2.9), the term l s h (t), in the limit l ® 0, describe the environmen-

tally induced fluctuations suffered by the classical particle. This forces us to

choose s to be proportional to l 2 1. Further information on the form of s
requires more specific details about the environment. In the particular but
frequently studied case of a thermal environment, the random force should

be ! 2M g kBT h (t), in order to coincide with the standard Langevin equation

of classical Brownian motion. From this we deduce that s 2 5 2M g kBT/ l 2.

The result is not hard to understand. Because of the environmentally induced

fluctuations it suffers, the quasiclassical particle is necessarily limited in the

precision with which it can ª measureº the quantum particle, hence the width
s of the ª measurementº is related to the fluctuations of the quasiclassical

particle.

The formal solution to (2.6) describes a family of pure states, ) c & 5
) c [h (t) ]& , one for each choice of function h (t). Correspondingly in Eq. (2.9),

with ) c & 5 ) c [h (t) ]& inserted in the pure state expectation value, there is one

evolution equation for each h (t). For fixed initial data ) c 0& , X 0, and XÇ 0, Eqs.
(2.6) and (2.9) therefore describe an ensemble of quantum and classical

trajectories ( ) c [h (t) ]& , X [h (t) ](t)), with members labeled by h (t). The probability

for each member of the ensemble is that implied by the probability distribution

of h (t) [implicit in Eq. (2.7) ].

There are two differences between the system (2.6)±(2.9) and the naive

mean-field equations (1.5), (1.6). One is the noise term h . In Eq. (2.9) [as
compared to Eq. (1.5) ] the noise clearly describes an additional (completely

uncorrelated) random force. This sort of modification to the semiclassical

Einstein equations has been considered previously [5, 20].

More important is the novelty that the state ) c & evolves according to

the stochastic nonlinear equation (2.6), and hence its evolution is very different

to that under the usual SchroÈ dinger equation, (1.6). In particular, it may be
shown that all solutions to (2.6) undergo localization [21±24 ] on a time scale

which might be extremely short compared to the oscillator’ s freqency v . That

is, every initial state rapidly evolves to a generalized coherent state centered

around values ^ xÃ& , ^ pÃ& undergoing classical Brownian motion. [The results
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cited above are readily extended to the case here in which the Hamiltonian

contains a linear coupling to an external force 2 X(t). ] Which particular

solution the state becomes centered around depends statistically on the initial
state of the system. For an initial state consisting of a superposition of well-

separated coherent states,

) c & 5 a 1 ) x1 p1 & 1 a 2 ) x2 p2 & (2.1 0)

the state after localization time will, with probability ) a 1 ) 2, be as if the initial

state were just ) x1 p1 & , and with probability ) a 2 ) 2, will be as if the initial state
were just ) x2 p2 & [24 ]. The localization time , 1/ s 2(x1 2 x2)

2 becomes, with

our previous choice s 2 , M g kBT/ l 2, very short indeed if the classical particle

has a large mass M.

Hence in the new semiclassical equations (2.6)±(2.9), effectively what

happens is that we solve separately for the two initial states ) x1 p1 & and ) x2 p2 & ,
and the classical particle then follows the first solution with probability ) a 1 ) 2
and the second with probability ) a 2 ) 2. In simple terms, therefore, an almost

classical system interacting through position with a quantum system in a

superposition state (2.1 0) ª seesº one or other of the superposition states with

some probability, and not the mean position of the entire state. This is the

key case for which the naive mean-field equations fail to give intuitively
sensible results [6, 25 ], and this is the main result of the model.

It is interesting to note that nonlinear SchroÈ dinger equations have been

considered before in the context of the semiclassical Einstein equations [7, 26]

because the combined system consiting of (1.1) together with the SchroÈ dinger

equation for the quantum state is nonlinear. The motivation here is rather

different. The equation (2.6) used here arises because it gives a phenomeno-
logical description of continuous measurement.

Note that our classical stochastic equations (2.9) do not involve dissipa-

tion, as one might expect. Dissipation will arise in Eq. (2.9) if the model of

the measurement process, Eqs. (2.1), (2.3), is extended to include feedback

forces (see, for example, ref. 18). This would modify our scheme, but does

not alter it in a fundamental way. Here, for brevity, we have worked in the
commonly used and instructive approximation of negligible dissipation.

3. DERIVATION OF AN EFFECTIVE THEORY FROM
DECOHERENT HISTORIES

In this section we discuss a more specific but more fundamental theory of
classical±quantum couplings, which is derived from the underlying quantum

theory of the whole composite system. As argued in the Introduction, classical-

ity of a particle arises as a result of decoherence due to the interaction with

an environment. We therefore consider a three-component composite system
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consisting of a particle with coordinate X (eventually to be the quasiclassical

system) coupled to an environment consisting of an infinite number of har-

monic oscillators with coordinates qn in a thermal state. The classical particle
is also coupled to a small quantum particle with coordinate x. The total

action is

S 5 # dt 1 12 MXÇ 2 2 V(X ) 2
1 # dt o

n 1 12 mnqÇ
2
n 2

1

2
mn v 2

nq
2
n 1 cnqnX 2

1 # dt 1 12 mxÇ 2 2
1

2
m v 2x2 2 l Xx 2 (3.1)

We will analyze this system using the decoherent histories approach to

quantum theory. This approach is reviewed in detail elsewhere, so here we
summarize only the essential parts of it that will be needed for this calculation

[14, 15, 27±32].

It is not difficult to see why the decoherent histories approach is useful

in this context [33 ]. We would like to derive an effective evolution equation

for the variable X, which we expect to be approximately classical motion,
plus a stochastic influence from the quantum system to which it couples. We

can see whether a particle follows such a trajectory by computing the probabil-

ity for a history of positions distributed in time, i.e., an object of the form

p(X1, t1, X2, t2, X3, t3, . . .). This is the probability that the particle is at the

approximate position X1 at t1, at X2 at t2, and so on. Because of quantum

interference, probabilities cannot immediately be assigned to histories. We
therefore need a mechanism to produce decoherence of the particle, hence

the coupling to the environment.

To compute the probability for a history of particle positions, we may

take as a starting point Feynman’ s assertion that the amplitude for a history

X(t) is proportional to exp{(i/ " )S [X(t) ]}, where S [X(t) ] is the action for the

path [34 ]. The amplitude for a restricted type of path (such as one close to
a classical trajectory) is obtained by summing over all paths satisfying the

restrictions. So, for example, the amplitude to start at X 0, pass through gates

labeled by a 1, a 2 at times t1, t2, and end up at xf is given by

!(X 0, a 1, a 2, Xf) 5 # a 1 a 2

$X(t) exp 1 i" S [X(t) ] 2 (3.2)

where the sum is over all paths satisfying the stated restrictions. The candidate
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expression for the probability is then obtained by attaching an initial state,

squaring, and summing over final values of Xf :

p( a 1, a 2) 5 # dX f Z # dX 0 !(X 0, a 1, a 2, Xf) C 0(X 0) Z
2

(3.3)

This formula, and indeed the probability for any set of histories characterized

by restricted paths in configuration space, may be rewritten quite generally as

p( a ) 5 # a

$X(t) # a

$Y(t) exp 1 i" S [X] 2
i

"
S[Y] 2 r 0(X 0, Y 0) (3.4)

where r 0 is the initial state. Here a denotes the restrictions on the paths.

Probabilities for histories defined in this way are nonnegative and prop-

erly normalized. But an important condition that they must satisfy is additivity

on disjoint regions of sample space. That is, if a and a 8 are disjoint histories,
the probability of the history defined by the union of a and a 8 (ª a or a 8º )

should be the sum of the probabilities of each constituent history:

p( a ø a 8) 5 p( a ) 1 p( a 8) (3.5)

For example, suppose that a denotes a set of histories which pass through a

series of gates between X 5 0 and X 5 1 on the X axis at a series of times,
and a 8 denotes a set of histories passing through gates between X 5 1 and

X 5 2 at the same times. The histories defined by their union pass through

gates between X 5 0 and X 5 2 at the same times.

It is easy to see that Eq. (3.5) is not generally satisfied, since

p( a ø a 8) 5 1 # a

1 # a 8 2 $X(t) 1 # a

1 # a 8 2 $Y(t)

3 exp 1 i

"
S [X ] 2

i

"
S [Y ] 2 r 0(X 0, Y 0)

5 p( a ) 1 p( a 8) 1 2 Re D( a , a 8) (3.6)

where D( a , a 8) is the decoherence functional,

D( a , a 8) 5 # a

$X(t) # a 8

$Y(t) exp 1 i

"
S [X ] 2

i

"
S [Y ] 2 r 0(X 0, Y 0) (3.7)

Loosely speaking, the decoherence functional measures interference between

pairs of trajectories, and the presence of the term Re D( a , a 8) prevents the

sum rules from being satisfied. If this term vanishes, however, for a Þ a 8,
then probabilities can be assigned using the formula (3.4). Experience shows
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that when a mechanism is introduced to cause Re D( a , a 8) to become diagonal,

typically both the real and imaginary parts vanish,

D( a , a 8) 5 0 for a Þ a 8 (3.8)

a condition referred to as decoherence. In particular, as indicated above,

coupling the system to a thermal environment and tracing it out causes the

decoherence condition to be approximately satisfied.

The construction of the decoherence functional for a particle linearly

coupled to a thermal environment with temperature T and dissipation coeffi-

cient g (the quantum Brownian motion model) has been described in detail
elsewhere (see, for example, refs. 35±37 and 15). Here, only the final result

is quoted, which is very simple. After tracing out the environmental coordi-

nates, one finds that the decoherence functional takes the form

D( a , a 8) 5 # a

$X # a 8

$Y r 0(X 0, Y 0)

3 exp 1 i

" # dt 1 12 MXÇ 2 2
1

2
MYÇ 2 2 2 D # dt(X 2 Y )2 2 (3.9)

where D 5 2M g kT/ " 2. For simplicity we consider the case V(X ) 5 0 and

the case of negligible dissipation. For macroscopic values of the parameters

M, g , and T, the factor D is exceedingly large, which means that contributions
to the path integral from paths with widely differing values of X and Y are

strongly suppressed. Hence the decoherence functional will tend to be very

small for a Þ a 8, so there is approximate decoherence. We may therefore

assign probabilities to the histories equal to the diagonal elements of the

decoherence functional.

Introducing Q 5 1±2 (X 1 Y ), and j 5 X 2 Y, we can carry out the j
integral, with the result

p( a ) 5 # a

$Q W 0(MQÇ 0, Q 0) exp 1 2 1

4 " 2D # dt(MQÈ )2 2 (3.1 0)

where W 0 is the Wigner function of the initial density operator [38 ]. The

interpretation of this result is reasonably clear. The probability distribution

is strongly peaked about trajectories in configuration space satisfying the

classical equation of motion QÈ 5 0. The factor " 2D 5 2M g kT represents

thermal fluctuations about deterministic motion, but if the mass of the particle
is sufficiently large, these are comparatively small [39]. The Wigner function

essentially provides a measure on the initial conditions of the trajectories [40].

Hence, a sufficiently massive particle will behave approximately classically in

the presence of a decohering environment of sufficiently large temperature.
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Having established the conditions required for the classicality of the

large particle, we now couple in the small quantum system. The decoherence

functional for the composite three-component system (massive particle, quan-
tum particle, environment), with the environment traced out, is

D( a , a 8) 5 # a

$X # a 8

$Y # $x $y r A
0(X 0, Y 0) r B

0(x0, y0)

3 exp 1 i

" # dt 1 12 MXÇ 2 2
1

2
MYÇ 2 2 2 D # dt(X 2 Y )2 2

3 exp 1 i

" # dt 1 12 mxÇ 2 2
1

2
m v 2x2 2 l Xx 2 2

3 exp 1 2 i

" # dt 1 12 myÇ 2 2
1

2
m v 2y2 2 l Yy 2 2 (3.11)

This formula is an elementary generalization of Eq. (3.9). The initial density

matrices of the massive and light particle are denoted r A(X 0, Y 0) and r B(x0,
y0), repectively. The inclusion of the light particle little affects decoherence,

so will we assume it, and take the probabilities for the histories of the massive

particle to be given by the diagonal elements of Eq. (3.11).

Again introducing Q 5 1±2 (X 1 Y ) and j 5 X 2 Y, we can perform the

integration over j , with the result, for the probabilities for histories,

p( a ) 5 # a

$Q # $x $y W A
0(MQÇ 0, Q 0) r B

0(x0, y0)

3 exp 1 2 1

8M g kT # dt 1 MQÈ 1
1

2
l (x 1 y) 2

2

2
3 exp 1 i" # dT 1 12 mxÇ 2 2

1

2
m v 2x2 2 l Qx 2 2

3 exp 1 2 i

" # dT 1 12 myÇ 2 2
1

2
m v 2y2 2 l Qy 2 2 (3.12)

where W A
0 is the Wigner transform of the initial density matrix r A

0. This is

the desired answer, but the trick is now to write it in a useful form. In

particular, it may be written
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p( a ) 5 # a

$Q # $qÅ W A
0(MQÇ 0, Q 0)wQ [qÅ (t) ]

3 exp 1 2 1

8M g kT(1 2 h ) # dt(MQÈ 1 l qÅ )2 2 (3.13)

where

wQ [qÅ (t) ] 5 # $x $y r B
0(x0, y0) exp 1 2 l 2

8M g kT h # dt 1 (x 1 y)

2
2 qÅ 2

2

2
3 exp 1 i" # dt 1 12 mxÇ 2 2

1

2
m v 2x2 2 l Qx 2 2

3 exp 1 2 i

" # dt 1 12 myÇ 2 2
1

2
m v 2y2 2 l Qy 2 2 (3.14)

To achieve the decomposition (3.13), (3.14) we have effectively deconvolved

the Gaussian in Eq. (3.13), using the functional integral generalization of

the formula

exp( 2 (x 2 y)2) 5 # dz exp 1 2 (x 2 z)2

1 2 h
2

( y 2 z)2

h 2 (3.15)

This deconvolution is of course not unique, and h is an arbitrary constant
parametrizing this nonuniqueness [although clearly the total probability distri-

bution (3.13) is independent of h ].

Written in the form (3.13), the probability distribution has a natural

interpretation. Suppose, for simplicitly, that the Wigner function of the large

particle is strongly peaked about particular values of Q 0 and MQÇ 0. Hence in

the absence of the coupling to the small particle, Eq. (3.13) describes a
probability distribution for the large particle strongly peaked about a single

classical solution with prescribed initial conditions, as outlined above. With

the small particle coupled in, however, there is the integration over qÅ (t)
together with the weight function (3.14). Therefore Eq. (3.13) is the sought-

after result: it describes an ensemble of trajectories for the large particle

evolving according to the stochastic differential equation

MQÈ 1 l qÅ 5 0 (3.16)

with a weight function for qÅ depending on the initial conditions and dynamics

of the small particle. The weight function (3.14) is discussed in some detail

in ref. 13. Here, we just make a few comments.
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First, it can be shown that wQ [qÅ ] is almost the formula (2.5) for continuous

quantum measurement of the small particle’ s trajectory. We therefore have

close agreement with the first approach to classical±quantum couplings
described in Section 2. It is possible, however, that exact agreement with

the continuous quantum measurement theory formula could be obtained by

exploring different types of coupling between the large particle, small particle,

and environment. Still, Eq. (3.14) is sufficiently close to the continuous

quantum measurement formula for us to be able to read off the width of the

effective continuous measurementÐ it is of order M g kT/ l 2, in agreement
with the heuristic argument of Section 2.

Second, it can be shown that wQ [qÅ ] is exactly a smeared Wigner func-

tional. The Wigner functional, introduced by Gell-Mann and Hartle [15 ], is

a distribution function on histories which bears the same relation to the

decoherence functional that the Wigner function bears to the density operator.

Like the Wigner function, the Wigner functional is not always positive. Here,
however, we obtained a smeared Wigner functional, which, like appropriately

smeared Wigner functions, is positive [40, 41 ].

Finally, the crucial property of wQ [qÅ ] is that it kills interferences in the

initial state of the quantum particle. Interferences between localized states

appear as rapid oscillations in the Wigner functional, but the smearing aver-
ages these oscillations to zero. (An analogous phenomenon occurs with the

usual Wigner function.) Hence, a superposition of localized states may be

effectively replaced by the corresponding mixed state, and the weight function

wQ [qÅ ] for an initial superposition state may therefore be replaced by a sum

of weight functions, one for each localized state. We therefore obtain the

same result as the approach of Section 2: the classical particle [which responds
to the quantum particle via Eq. (3.16) ] sees only one element of a superposi-

tion, with some probability.

4. CONCLUSIONS

We have presented two schemes for coupling classical and quantum
variables which accommodate nontrivial states of the quantum variables in

an intuitively sensible way.

The first scheme, in Section 2, is based on the premise that the interaction

between the classical and quantum variables may be regarded as a quantum

measurement. The mathematics of continuous quantum measurement theory

then fixes the overall structure of the scheme, but an additional physical
argument is required to fix the parameter s describing the precision of

the measurement.

The second scheme, in Section 3, involves a more fundamental derivation

of the form of the effective equations of motion for a simple system consisting
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of a large particle coupled to a small particle, and coupled also to a thermal

environment in order to produce the decoherence necessary for classicality

of the large particle. Both of the schemes lead to the desired form (1.7) of
the effective equations of motion of the classical particle, but produce slightly

different formulas for the probability of the stochastic term xÅ (t). This small

difference might be reconciled by a more detailed study of the couplings

between the systems present.

The first scheme is more phenomenological, and hence more general.

And, as pointed out at the Peyresq-3 meeting by David Finkelstein, it makes
clear what the minimal requirements are for a model of classical±quantum

couplings which improves on the naive mean-field approach. The second

scheme is more model dependent, but produces a precise value for the width

of the effective ª measurementº of the quantum particle by the classical

particle, verifying the heuristic analysis of Section 2.

Similar results are obtained with different types of couplings, for exam-
ple, to momentum or to energy [13 ]. Obviously an important challenge is to

extend to quantum field theories and hence to obtain a generalization of Eq.

(1.1). This would mean confronting the difficult issues of covariance and

nonrenormal izability.

An essential ingredient in these approaches is the explicit appeal to
decoherence in order to ensure the quasiclassical behavior of one of the

susbystems. Weaker notions of classicality are sometimes used in this context.

For example, it is sometimes argued that a massive particle starting out in a

coherent state and evolved unitarily will behave ª classically.º Aside from

the fact that a special initial state is required, the ª classicalº system is really

still quantum, and its quantum nature may be seen if it interacts with another
subsystem in a nontrivial superposition state, for then the entire composite

system would go into a ª nonclassicalº superposition. The notion of classicality

used here, which follows the decoherent histories literature [14, 15], is more

comprehensive, and is the appropriate one for the real physical systems that

we observe to be effectively classical.

Although we made heavy use of the decoherent histories approach in
characterizing emergent classicality in Section 3, it seems very likely that

similar results might be found from other approaches, such as the density

matrix approach [42±44 ] or quantum state diffusion picture [23, 22]. A system

similar to that considered in this paper has been analyzed by Zoupas [11]

using the quantum state diffusion picture, and a simple spin system by Yu

and Zoupas [45 ]. Furthermore, the theory of continuous quantum measure-
ments used in Section 2 is closely related to the so-called hybrid representation

of composite quantum systems [10, 46 ], and this provides yet another possible

framework for examining the emergence of a theory of coupled classical±

quantum variables.
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Calzetta and Hu [47 ], in the context of system±environment models

(such as quantum Brownian motion), have written down stochastic equations

describing the stochastic effect of a thermal environment on the system. They
have also discussed the decoherence of ª correlation historiesº in field theories,

and have shown that histories specified by values of the energy-momentum

tensor are approximately decoherent, and thus may be assigned probabilities

[48]. This leads to the possibility that the right-hand side of (1.1) may be

taken to be a stochastic c-number, TÅ m n , whose probabilities are given by

the expression derived by Calzetta and Hu, thereby generalizing the results
discussed here to the full Einstein equations. Some other related work may

be found in refs. 49 and 50.
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